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:CT- This study expands upon previously reported work (Zhiming,
ABSTRA 't;e&r finite element model for planar
8 nongl;gor their analysis under seismic loads.
ethod = '
4 crushing g : .
an The method 1s program

1986) and presents

RC shear walls and a CAD integrated modular

The material properties are represented

c relationships 1in whic’t:l yielding, plasticity, crack opening and closing
he concrete are taken into account as well as vielding of the steel
ed and applied to several numerical examples.

' gment- L
reinforc ‘th experimental data are presented.

| INTRODUCTION

concrete shear walls play a

very important role 1n pr?viding the
necessary strength anc'i stiffness to a
huilding which is subjected to seismic
loading. The necessity for safe and econ-
omical design of such structures makes a
strong case for carrying out research in
order to assess realistically their be-
haviour during earthquakes. Since the be-
haviour of the structure during the earth-
quake is significantly non-linear and the
seismic loading involves many reversals of
direction of load, the eventual structural
condition of the shear wall is path-depen-
dent. In particular it may not be possible
in all cases to estimate the collapse be-
haviour of the structure on the basis of
monotonically increasing loads. One
EPWMCII is to predict the non—-linear
rmﬂe of the RC structure to a patic™

Reinf orced

leular earthquake excitation using the

L

_flmm*f&lement method (Penzien, 1975). A

Mﬁiu'ﬁmers have been devoted to the

, 11&, 19725 Darwin, 1974 and Hsu,

ff?'ﬁ;mr'the'past twenty years (Nilson,
T SeRLIn, 1970: Cervenka, 1970

i P“TPOSQ of this paper 1is to
PR TP‘TEﬁerred application of the finite

T o Wlleas o d -"t° the analysis of shear

SN L The

i '-_*-ihte-grated modules and 18
7 Cheap that a large number of
oh ame . -TiONS can be used. Thus,
° °TY Ome particular solution may

o o erflc information, consideration

°"Ch solutions together can give

valuable insights.

2 MATERIAL IDEALIZATION

A material model has been developed and 1is
summarized below. It may be noted that
the model has three main attributes (a)
plain concrete stress—strain properties in
biaxial compression (b) deformation of the
cracked concrete element (c) stress—strain
properties of the steel reinforcement.

2.1 Constitutive relationships

For the failure of concrete in tension a
maximum normal stress theory has been
used, and for the failure of concrete 1n
compression a maximum strain theory has
been adopted. The assumed failure envel-
opes for concrete 1n a biaxial state of
stress and strain are those of Agrawal
(1977) and are shown in Figure 13 e

yielding is governed by a yield criterion

of <the form:

F({a}") =0 (1)

he Von-Mises yield

Tn accordance with t | :
face is defined

criterion, the yield sur

as .

F({0}%) = (GXC) o f g y
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where elc, szc = the principal strains for
concrete
BT equivalent uniaxial
strain

Hilsdorf, Kupfer and Rusch (1969) have
indicated that the biaxial tensile strength
of concrete is almost equal to its uniaxial
ten31}e strength. However, the concrete
cag'W1thstan§ tensile stress up to a limit
zgrezgtircwl;;ch 1t cracks, The splitting

ress 0y dssumed to be the maximum
prln?lpal tensile stress that can be
attained before cracking

S of the
within an element . A

2.2 Crack modes

7 4 : S
€d con

“ Suggegted that the elagta.

beé€ p
1t has :x takes the form:

jastic MELE

p
o e ok
e ep '
o 3F C 1) pte £ at
D -
[De] [: 9{ o} : e] 1 0}

(6)

C = the elastic material mat
of uncracked concrete of

element given by equatigy

where [De] Tix

$7 7
(D ]° = . R :
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The quantity Op 1s the uniaxial stress

at yield. Concrete having one set of open

1
=

cracks will start yielding in uniaxial
compression if oy€ > 0.“. In this case,
such a concrete 1s assumed to have been
crushed 1f the uniaxial strain attains a
certain value (often taken as 0.003).
The elasto-plastic matrix [De]C takes
the place of the elasticity matr?g [Dea]®
in incremental analysis if the concrete

becomes elasto-plastic.

2.4 Opening, closing and reopening of
cracks in concrete

Referring to Figure 3, the concrete cracks
for the first time when a principal stress
equals or exceeds the allowable tensile

Stress. A set of cracks is formed in an
element Perpendicular to the direction of

'ln.‘

¥ : : A - L._
the Principal tensile gtregs, if oy~ > Ot

——

The cra?ked concrete is assumed to behave
as a un}aXial material and Caffiestﬂn?sy‘
ijlzuzslnlthe d?rection of cracks. 'Hui
= grthoa SO0 suitable for the Secondfﬁks
have gonal cracks. After these cract

been formed, the cracked concrete 15
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' 7.5 Steel reinforcement

The steel reinforcement 1s assumed to'be
i1 a state of uniaxial stress. The bi-

linear stress—strain law 1s used. In our
study, it is treated as a linear-elastic/

perfectly plastic material.
E 2,6 Composite material property matrix

A "smeared" composite material property
matrix is generated by adding the con-
stitutive matrix for steel reinforcement

to that of plain concrete. This can be
WIitten as:

ﬂi. c
g (D )° (13)
' I-Bﬁp-ending upon the state of plain

Conerete in ap el
? ﬁ?yyd,cxmduﬁl
: nll?ﬁm repr
= ormulation
procedure of inc
: teel teinfore

ement, the elastic,
s OF c¢rushed state 1is

ement 1s described below.

NT MODEL

~ tangyj,, *9%€ of this study, the rec-
- 8tress element with three
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strain normal to the cracks,

esent [D,]¢, respectively.
of the matrix [D.] and the
Orporating the yielding of

ol at each node, based on

rotation '6y' of the node. The minimum
potential energy theorem is used in the

familiar way.

Complete details of the element form-

ulation are given in Agrawal (1977).

4 SOLUTION PROCEDUR

o

The nonlinear analysis of the RC planar

structure under ground motion is conducted
through the use of an iterative procedure.

The structure response is computed by

applying the ground motion in a sequence
of incremental load steps. Within each

step, the nonlinear equilibrium equations

are linearized using a stiffness approach,
: (o

(K] {AS} = {AP} (14)

where [Kr] is a stiffness matrix which is
updated at the end of each iterative step,

and thus reflects the current state of

material properties of the structure.

These equations are solved to determine
increments of nodal displacements.

5 NUMERICAL RESULTS AND COMPARISONS

Numerical examples are given below of the
behavior of two shear walls using the pro-
posed analytical model. The material pro-
perties of chosen test specimen are those
of Eybas (1977) and Hsu (1974} respects
ively. The idealizations of shear wall
are shown in Figure 5. Tables 1 and 2
give comparison of natural frequency and
response values. Figures 6 and 7 show the
crack patterns. The agreement with the
experimental results obtained by Lybas and
Hsu is in general quite good.

6 CAD INTEGRATED MODULES

Although the computational efficienci?s of
general finite element programs have 1in-
creased steadily over the past few years,
the time-consuming process of accurate
data presentation is still a burden for
most users of the finite element method.
In practice, using conventional methods,
approximately ninety percent of the Fotal
time of analysis may be consumed by 1input
and output. Clearly, there is_a need for
improved pre— and post—processing pro-
cedures to parallel the advances m§de 1n
computational techniques. The achievement
of such improved procedures will have the
additional benefit that because the user
will need to concentrate on only minimal
input data the occurrence of human errors
in the pre-processing and post-processing
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The three integrated CAD

analysis and post—process”

pre-processor,

6.1 Pre-processor

cludes the geometric

description and specification of the.pro—
blem, and handles such specific attributes
as element types, material properties and
boundary conditions. Figure 5, which was
produced by computer graphics, shows the
modelling of two structures, .8, Yall-l

and Wall-2.

The pre-processor in

6.2 Analysis

The analysis program is specific to non-
linear finite element analysis of RC shear
walls under earthquakes. The data 1is fed
from the pre-processor and the analysis
software provides the results such as
stresses, displacements etc. to the post-
processor. The total analysis procedure
takes about 190 CPU seconds to complete

37 step 1terations; at a cost of 10¢ per
CPU second on the Cyber 825, total cost of
the analysis is thus $19 (Canadian funds).

6.3 Post-processor

T?e POSt—processor program is used to dis-
play structural idealization, def]l e
and stress contours. Figure’B sh e o
sFruct?re deflections for Wall-1 e t?é
fied fifty times. FigurES'Q, IO,éEZEQi_

show the stress c
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6.4 Concluding comments on the CAD

nmodules

[e—

The ytilization of CAD techniques has
4]1ready proven to be of great advantagE

in understanding complex structural
and in the design of structures

behavior
Integrated modules are being developeq
for dynamic display capability; these are
expected to pTrove very useful to designerg
<hen carrying out non-linear dynamic

structural analysis.

7 FURTHER DEVELOPMENT OF THE METHOD

The method as reported in this paper is
still being refined and improved. In
particular, if the input ground motion 1is
very strong indeed, so that a large number
of elements become yielded, cracked or
crushed in a single load increment step,
it is possible for the diagonal term of
the stiffness matrix to become zero, 1.e.
for the stiffness matrix to become
singular. This means of course that the
calculation cannot continue. Work 1s mow
going on to develop a revised algorithm
capable of coping with this condition.
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CONTOUR VALUES X STRESSES

{===26.0
2---20.9
3~-~15.8
i-~=-18.0
$5--=-5.0
6--9.8
7-=-5.0
$--10.8
--15.0
i8-22.8

WALL-1 at the 24th

CONTOUR VALUES

j=-==§8.0
2--=48.8
§---28.8
4--8.8
$§--28.8
8--48.0
7--68.0
$--80.0

XY STRESSES

228
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CONTOUR VALUES

|=-==260.8
2---200.8
3---158.8
4---108.8
§---50.0
6--9.9
7--58.9
$--1808.9
9--1548.8
18-282.8

Step of iteration

MAXINUN PRINCIPAL STRESSES
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Fig. 10 WALL-1 at the 34th step of iteratiomn
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CONTOUR VALUES X STRESSES CONTOUR VALUES XY STRESSES CONTOUR YALUES MNAXINUR PRINCIPAL STRESSES
= =(000000.0 § = =1000000.0 _ | = =3200000.0
| . R == =1 400008 R
| 3 — -1200008. 3 == ~2400008.
4= ~1000008. § o =SEEDIS .
§ — ~880000.0 § — 1000000,
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